DATA WAREHOUSE SCALABILITY and TUNING

Data Warehouse Summit Phoenix Thursday, December 10, 1998 8:30 A.M. - 9:50 A.M.

David McGoveran Alternative Technologies 13150 Highway 9, Suite 123 Boulder Creek, CA 95006 Telephone: 408/338-4621 www.AlternativeTech.com

BEFORE YOU LEAVE... PLEASE FILL OUT YOUR EVALUATIONS.

Thank you!

C. 1998, Alternative Technologies, All Rights Reserved

OUTLINE

- Scalability
 DEFINITION
- Key Ways Data Warehouse Scalability Fails – DEADLY ARCHITECTURAL DECISIONS
- Difficulties in Tuning
 - WHY ITS DIFFERENT FROM TUNING FOR OLTP
- Tuning Options
 - DATA PLACEMENT
 - TABLE PARTITIONING
 - QUERY AND LOAD PARALLELISM
- The Secret(s) of Success

SCALABILITY Definition

SCALABILITY IS:

- **SCALEUP** or **SPEEDUP** (see slides which follow)
- WITH RESPECT TO A SPECIFIC RESOURCE MIX
 - » AMOUNT OF MEMORY, NUMBER / SIZE OF STORAGE UNITS, NUMBER OF CPUs, NUMBER OF NODES, et cetera.
- OVER A SPECIFIED RANGE
- FOR A PARTICULAR WORKLOAD
 - » NUMBER OF USERS, DB SIZE, TRANSACTION RATE, TRANSACTION COMPLEXITY or PROFILE
- Conceptual Definition of Speed Up
 - MORE RESOURCES METTER PERFORMANCE, SAME WORKLOAD
- Conceptual Definition of Scale Up

MORE RESOURCES 🗹 SAME PERFORMANCE, BIGGER WORKLOAD

SCALABILITY *GENERAL GOALS*

The Essence of Scalability is Independence of...

- COMPONENTS BY FUNCTION AND TASK INSTANCE
- RESOURCES ASSIGNED TO INDEPENDENT COMPONENTS
- Non-Independence Manifests As...
 - **RESOURCE CONTENTION (WAIT TIME)**
 - PROCESSING ANOMALIES AND MAINTENANCE SIDE EFFECTS
 - INABILITY TO EXPLAIN THE ARCHITECTURE
 - INABILITY TO EXPLAIN THE CAUSE OF SYMPTONS

Avoid These By Building-in Independence

- Physical Schema Rigidity
 - THE HIGH COST OF CHANGES
- Load Interferes with Query
 - QUERY ACCESS LIMITED DURING LOAD, REFRESH, INDEX BUILD
- Administrative Complexity
 - BACKUP, RECOVERY AREN'T REALLY ONLINE
 - REDISTRIBUTING DATA ON NEW DRIVES

Loss of Resource Control

- USERS MODIFY SCHEMA
- USERS ISSUE ARBITRARY QUERIES
- NO CONTROL OVER GENERATED SQL
- NO KNOWLEDGE OF LOAD
- NO MEANS TO MONITOR AND CONTROL LOAD
- Poor Table Design
 - COMPLEX PRIMARY KEYS
 - » IN AN ATTEMPT TO AVOID TOO MANY TABLES
 - NO PRIMARY KEYS, CHARACTER STORAGE, REDUNDANT DATA
 - RESULT: WASTED STORAGE AND EXECESSIVE I/O

Denormalization Without Discipline (Potentially Bad)

- JOINED TABLES
- PARTITIONED AND REPLICATED TABLES
- REDUNDANT COLUMNS
- DERIVED COLUMNS
- EMBEDDED FOREIGN KEYS
- UNIONED ENTITIES (LEADS TO NULLS!)
- various other reasons....
- Why is this done?
 - ASSUMED TO OPTIMIZE STORAGE ALLOCATION
 - ASSUMED TO MINIMIZE I/O COSTS, INCLUDING JOIN I/O
 - MAKING IT "EASIER" TO ACCESS RELATED INFORMATION

- With VLDB, Physical Design Rules Change EXAMPLE:
 - » COMPOUND KEYS IN VERY LARGE TABLES ARE OFTEN REDUNDANT, WASTING LOTS OF SPACE
 - **SOLUTION:**
 - » REPLACE WITH SURROGATE KEYS AND A LOOKUP TABLE EXAMPLE:
 - » "FACT" TABLES OFTEN CONTAIN MULTIPLE ENTITIES WITH NULLABLE ATTRIBUTES
 - » CAUSES CONDITIONAL PROCESSING
 - SOLUTION:
 - » NORMALIZE AND ELIMINATE NULLS

DEADLY ARCHITECTURAL DECISIONS

- Mixing Workloads
 - SYNCHRONIZING OPERATIONAL SOURCES
 - TRANSFORMATION AND CLEANSING
 - EXTRACT PROCESSING
 - » MOLAP TOOLS
 - » BATCH REPORTING
 - AD-HOC QUERY
- Confused Design
 - BY MIMICRY (OFTEN "FLAKEY")
 - BY QUERY OR BI TOOL, OR BY USER
 - » THE "TOO MANY DATA MARTS" TRAP

DEADLY ARCHITECTURAL DECISIONS

Page 11

- Selecting the Wrong DBMS
 - LIMITATIONS
 - » QUERY COMPLEXITY
 - » TABLE SIZE
 - » INDEX CHOICE AND SIZE
- Selecting the Wrong Hardware
 - LIMITATIONS:
 - » NUMBER OF FILES
 - » FILE SIZE
 - » NUMBER OF CONTROLLERS
 - » AMOUNT OF MEMORY
 - » NUMBER OF CPUs

C. 1998, Alternative Technologies, All Rights Reserved

ARE YOUR QUERIES OUT OF TUNE? (-: again? :-)

- Operational Query Tuning
 - CAPACITY AND LOAD ANALYSIS
 - TUNE AND DEPLOY: DESIGN SEPARATE FROM OPERATIONS
 - RELATIVELY EASY TO LOCALIZE TUNING EFFECT
 - WELL DEFINED PROCESSING PRIORITIES
 - KEY PROBLEM IS CONCURRENCY AND CONTENTION
- DW Query Tuning Is An On-Going Process
 - STABLE LOAD PROFILES ARE RARE
 - RAPID GROWTH MAKES I/O DIFFICULT TO MODEL
 - HIGHLY INTEGRATED AND MULTIPLE PRIORITIES
 - KEY PROBLEM IS CHANGE

QUERY PRINCIPLES

- Make Each Query Smart!
- Minimize Amount of Data
 - STORED AND ACCESSED
 - RETURNED OR UPDATED
- Divide and Conquer As Necessary
 - ASK FOR WHAT YOU NEED IN ONE QUERY
 - » PROVIDE ALL KNOWN COLUMN RELATIONSHIPS
 - FLATTEN SUBQUERIES
 - AVOID AGGREGATE FUNCTIONS WHEN REASONABLE
 - BREAK INTO ADDITIONAL QUERIES <u>ONLY AS NECESSARY</u>
 - USE TEMPORARY DATA WORK TABLES ONLY IF NECESSARY

Indexes

- AVOID TABLE SCANS!
 - » EXCEPT FOR "SMALL" TABLES
- INDEX TYPE
 - » B-TREE, HASH, BIT-MAPPED, HYBRID, EXPRESSION, MULTI-TABLE, SPECIALTY (e.g., R-TREE) TABLE AND COLUMN SELECTION

REQUIREMENTS:

» LOAD PROFILES, PRIORITIES, INDEX OPTIONS, DATA INDEPENDENCE

METHOD:

» OPTIMIZATION VIA SEARCH ARGUMENTS

- Data and Index Placement
 - NODE, CONTROLLER, DISK DRIVE
 - RELATIVE PLACEMENT
 - » AVOID CONTENTION
 - » MAXIMIZE PARALLELISM

REQUIREMENTS:

» I/O DISTRIBUTION, CONTENTION, LOAD PROFILES, RESOURCES, DATA INDEPENDENCE

METHOD:

» CALCULATION BY REFINEMENT, CONFLICT ANALYSIS

Table Partitioning

- PARTITION TYPE: KEY RANGE, EXPRESSION, HASH, ROUND ROBIN, SCHEMA
- PARTITION SIZE
- REQUIREMENTS: LOAD PROFILES, RESOURCES, DATA INDEPENDENCE
- METHOD: CALCULATION BY REFINEMENT
- Replication
 - REPLICATION MECHANISM AND TIMING
 - TABLE (AND PARTITION) SELECTION
 - REQUIREMENTS: REFRESH COST, LOCALIZED LOADS
 - METHOD: SIMULTANEOUS GOAL OPTIMIZATION

Parallelism

- LOAD AND EXTRACT
 - » AVOID CONTENTION
- QUERY
 - **» THE RIGHT DEGREE OF PARALLELISM IS ESSENTIAL**
 - » DIFFICULT TO CONTROL IN SOME PRODUCTS
- INDEX AND TABLE BUILD
 - » AVOID ALLOCATION ERRORS
- BACKUP AND RECOVERY
 - » PARTIAL DATABASE RECOVERY MAY SUFFER

THE DW TUNING DILEMMA

All Tuning Techniques Depend On ...

KNOWLEDGE

INDEPENDENCE

The Two Things You Have The Least Of With Most Data Warehouses!

C. 1998, Alternative Technologies, All Rights Reserved

THE SECRETS TO SUCCESS

- You Must Understand Logical Design
 - **DEPENDENCIES**
 - NORMALIZATION
 - THE DATABASE DESIGN PRINCIPLES
 - » THE DATABASE DESIGN PRINCIPLE OF ORTHOGONALITY (MCGOVERAN-DATE)
 - » THE DATABASE DESIGN PRINCIPLE OF COMPLETENESS (MCGOVERAN)
 - » THE DATABASE DESIGN PRINCIPLE OF MINIMALITY (MCGOVERAN)
 - IDENTIFYING PROPER COLLECTIONS OF TABLES
 - GUARANTEEING VIEW UPDATABILITY

THE SECRETS TO SUCCESS

Logical

- GUARANTEES ACCESS (RELATIONAL CORRECTNESS AND COMPLETENESS)
 - » BOTH PROCESS (PERMISSIBLE STATE TRANSITIONS) AND DATA
 - » A SUCCESSFUL TRANSACTION IS A PERMISSIBLE STATE TRANSITION (TAKES DATABASE FROM ONE CONSISTENT STATE TO ANOTHER)
- Physical
 - ADDRESSES EFFICIENCY (PERFORMANCE AND STORAGE)
 - » BOTH PROCESS (ACCESS METHODS) AND DATA
 - MUST BE A VIEW OF THE LOGICAL MODEL (WHY?)

THE SECRETS TO SUCCESS LAYERED DESIGN

C. 1998, Alternative Technologies, All Rights Reserved

Page 21

PHYSICAL DATABASE DESIGN

- The Design of Storage Structures
 - FOR PERFORMANCE
 - WITHOUT SUBVERTING RELATIONAL CORRECTNESS!
 - DON'T CONFUSE WITH DESIGN OF THE LOGICAL VIEW!
- Need Not Be Normalized If...
 - CAN HIDE PHYSICAL DEVIATIONS FROM FROM ALL USERS
 - ALL OPERATIONS MANIPULATE ONLY THAT LOGICAL VIEW
 - PHYSICAL SCHEMA UPDATES NEVER INDUCE LOGICAL ANOMALIES

PHYSICAL DATABASE DESIGN

- Method
 - TREAT PHYSICAL SCHEMA AS A SET OF UPDATABLE VIEWS DEFINED FROM THE LOGICAL SCHEMA
 - » <u>NOT THE REVERSE METHOD (AS IS MORE COMMON)!</u>
 - ENFORCE PHYSICAL MULTI-TABLE CONSTRAINTS VIA TRIGGERS AND INTEGRITY CONSTRAINTS

Remember ...

The Golden Guarantee of Data Independence "ALL PHYSICAL COMPLEXITY CAN BE CONCEALED VIA ACCESS THROUGH THE LOGICAL SCHEMA"

PHYSICAL DATABASE DESIGN

- What is Legitimate?
 - A SINGLE LOGICAL RELATION CAN BE REPRESENTED BY TWO OR MORE PHYSICAL TABLES
 - » JOIN, UNION, DIFFERENCE
 - MULTIPLE LOGICAL RELATIONS CAN BE REPRESENTED BY A SINGLE PHYSICAL TABLE
 - **» PROJECTION, RESTRICTION**
 - » REDUNDANT, PRECOMPUTED, AND ALTERNATE COLUMN FORMATS

DIMENSIONAL SCHEMAS THE RIGHT WAY

- Get the Benefits Without Abandoning Reason!
 - FULLY NORMALIZE THE LOGICAL DESIGN
 - USE ONLY THE DEPENDENCIES THAT MATTER TO THE APPLICATION RELATIVE NORMALIZATION
 - » MANY DEPENDENCIES ARE NEVER SEEN BY THE APPLICATION
 - » ATTRIBUTES MAY BE COMPLEX (A SET FOR A REPEATING GROUP) BE CAREFUL!
 - OPTIMIZE THE PHYSICAL FOR MINIMUM STORAGE
 - » HIGH SCAN COST OFTEN OUTWEIGHS JOIN COST
 - MAKE CERTAIN THE PHYSICAL IS COMPATIBLE WITH THE LOGICAL

DATA INDEPENDENCE THE SECRET TO SCALABLE DESIGN

- Logical Mostly Independent of Physical
 - CAN HIDE STORAGE ALLOCATION AND PERFORMANCE
 - PHYSICAL PLATFORM ISSUES NEED BE KNOWN ONLY TO DBMS
 - SQL ENTANGLES THESE, ESPECIALLY AT TABLE CREATION
- Applications Access <u>Only</u> the Conceptual or Logical Schemas
- <u>Result?</u>

A <u>SCALABLE</u> DESIGN!

- CAN CHANGE THE APPLICATION CODE AND THE PHYSICAL SCHEMA INDEPENDENTLY!
- ADDRESS INVARIANT AND VARIABLE REQUIREMENTS INDEPENDENTLY
- ENABLES SCALABLE PLATFORM ARCHITECTURE CHANGES

C. 1998, Alternative Technologies, All Rights Reserved

BIOGRAPHY

David McGoveran is an industry analyst, and an international management and technology consultant . He is president of Alternative Technologies (Boulder Creek, CA), specialists in solving difficult relational applications problems since 1981. Having authored numerous technical articles and co-authored several books (including those with Chris Date), his newest book is <u>A Zero</u> <u>Management: Business Success in the New</u> <u>Millenium.</u>

This seminar is based on his workshops: <u>The Client/Server</u> <u>University:</u> <u>Designing Effective Databases</u>, and <u>Achieving</u> <u>Scalability.</u>

PLEASE FILL OUT YOUR EVALUATIONS... Thank you!

C. 1998, Alternative Technologies, All Rights Reserved

